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Abstract. The Mathematization project investigates students’ use of mathematical

tools across the undergraduate physics curriculum. As a part of this project, we look at

intermediate mechanics students’ written homework solutions to understand how they

use these tools in approaching traditional mechanics problems. We use a modified

version of the ACER (Activation-Construction-Execution-Reflection) framework to

analyze students’ solutions and to identify patterns of mathematical skills used on

traditional problems. We apply techniques borrowed from network analysis and the

Resources Framework to build a “fingerprint” of students’ mathematical tool use. In

this paper, we present preliminary findings on patterns that we identified in students’

problem solving.

Keywords: Mathematization, Undergraduate homework, Problem solving, Network

analysis

ar
X

iv
:1

61
1.

02
26

2v
4 

 [
ph

ys
ic

s.
ed

-p
h]

  1
5 

Ju
n 

20
17



Varied reasoning schema in students’ written solutions 2

1. Introduction

Homework is a key element in every undergraduate-level physics course for practicing

problem solving. Students often have difficulties combining physics ideas with

mathematical calculations and selecting among known mathematical tools. Therefore,

it is important to explore how students employ mathematics when approaching physics

homework problems.

In this paper, we focus on the mathematical tools required in upper-division physics

courses, such as evaluating integrals, using differential equations and approximations,

or choosing an appropriate coordinate system. Although these techniques are covered

in mathematics classes, where students can successfully solve problems, many students

still struggle to apply these mathematical tools to problems in physics. This is true

especially at the upper-division when problems are more complicated and mathematics

more tightly entwined with problem solving [1, 2]. In our study, we use the ACER

(Activation-Construction-Execution-Reflection) framework [3,4] combined with network

analytic methods [5] to investigate how upper-division students’ written work shows their

mathematical tool use on typical homework problems.

The ACER framework was developed using think-aloud interview data on

conceptually-rich research-based problems. These problems are different in character

from the more traditional problems in our study. Our data are wholly written accounts

with sparse reasoning evidence. However, because students’ written homework solutions

are common at the upper-division level, they may represent a ubiquitous and easy-to-

acquire data source for education research. Within these constraints, this paper explores

how, if at all, the modified ACER framework can be used to analyze written evidence of

typical problem solving in a traditional course. We investigate three kinds of differences:

differences in solution paths within one problem; differences among multiple problems

of the same type; and differences in students’ initial problem solving steps as a function

of kind of problem.

2. Context

Our data are drawn from an undergraduate course in Classical Mechanics taught at a

large land-grant university in the central United States. As at many similar institutions,

our Classical Mechanics course is a textbook-centric 4 credit-hour course with a solid

foundation in the basics of theoretical physics taught in a predominately lecture format.

It is usually taken as the fourth physics course for physics majors and minors in the

spring of their second year. Typically, the students are concurrently enrolled in a

differential equations course. Our course uses Classical Mechanics by J. R. Taylor [6];

the lectures cover the first 10 chapters, including topics such as Newton’s laws of motion,

momentum, angular momentum, energy, oscillations, Lagrange’s equations, two-body

central-force problems and rotational motion of rigid bodies.

All homework problems were selected from the textbook and were chosen to
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encourage students to practice solving problems. In return, students could earn extra

points towards their final grade. Students were encouraged to work on problems

in groups but, for pedagogical reasons, they were to write solutions independently.

Students in this class were not taught an explicit procedure to solve problems. Rather,

they were free to solve them any way that they could, which gave us the opportunity

to gain insight into their reasoning when left to their own devices.

In spring 2015, 12 students were enrolled in the class. They had 13 weekly homework

assignments (each including 10-15 problems). A complete solution to each homework

problem was expected to be about half a page long and include diagrams, mathematics

and verbal statements. We scanned students’ submitted homework for analysis before

passing them to the grader. All students in the course consented to participate in our

research study.

3. Analytic Framework

Several attempts to model physics problem solving break it into discrete steps to be

followed in a linear order [7,8]. However, unless students are explicitly taught to follow

these algorithms, their approaches to problem solving rarely fit these linear models. In

contrast, studies using knowledge-in-pieces frameworks to understand students’ non-

linear problem solving “in the wild” (e.g., Ref. [9]) rely on the richness of interview or

video data to make inferences about student reasoning.

The ACER framework bridges the gap between prescriptive problem solving

and knowledge-in-pieces [3, 4]. It was developed to analyze the use of mathematics

in upper-division physics courses. The ACER framework is organized around four

components: Activation (determining the proper mathematical tool); Construction

(making a mathematical model); Execution (performing mathematical steps); and

Reflection (checking the final solution). Within each of these four components, students

may perform multiple specific actions that are then detailed using sub-codes. For

example, within Construction, a student might choose a coordinate system or set the

limits of integration. In solving a particular problem, a student may freely move among

these components in any order, visiting each of them several times with different sub-

codes. Naturally, the details of the sub-codes depend on the specific physics topic and

problems at hand.

Prior work using ACER framework has focused mostly on topics in electricity and

magnetism. We extended the extant set of sub-codes to include codes appropriate

for mechanics, as well as to cover students’ errors (e.g., mistakes done when taking

derivatives, using an incorrect strategy, etc.). We coded students’ problem solutions,

iteratively seeking new content codes and combining proposed codes until our code

book covered > 95% of student work. As the code book approached stability, eight

people participated in inter-rater reliability testing to assure the code book was a valid

representation of student problem solving. When the code book was stable, multiple

graders looked at different problems to confirm the reliability of coding. Once two
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graders coded individual problems and achieved > 90% agreement on student work, the

code book was established. In this paper, we report on three problems selected from

homework assignments across all students. We compare both across students and across

problems to find patterns of mathematical tools use within each problem.

To compare patterns in students’ solutions, we used techniques borrowed from

network analysis [5]. A network graph is a collection of points, called nodes, and lines

connecting these points, called edges. When the direction of a connection matters,

we have a directed graph. In such cases, an edge from node A to B (A → B) means

something different than an edge from B to A (B → A). If the direction of a connection

does not contain any information about the relation between nodes (i.e, A−B has the

same meaning as B − A), a graph is called undirected. A graph can be characterized

using various measures, such as node and edge count, diameter or density. Node and

edge count correspond to the number of nodes and edges, respectively. Diameter is the

longest graph distance between any two nodes in the network and it represents the linear

size of a network. Density, on the other hand, is the ratio of the number of existing

edges to the number of all possible edges, and can be thought of as a measure of network

effectiveness. To determine the most important nodes in a network, one can perform

centrality analysis. Depending on the nature of a network, as well as on the category of

the “importance of a node” one is interested in, there are multiple centrality measures

that can be used. [5] Degree centrality indicates the importance of a node by the number

of nodes connected to it, where the larger the degree, the more important the node is.

Within this framework, nodes represent ACER sub-codes and the directed edges

represent the order of steps students took to solve a given problem. When looking at

the network created from all solutions to a given problem, we weight the edges of the

graph by how many times students connected a given two nodes to emphasize which

connections between nodes are important. Edges with higher weights represent common

connections within a network.

4. Variation in solutions within one problem

Problem 1 A particle of mass m is moving on a frictionless horizontal table and is

attached to a massless string, whose other end passes through a hole in the table, where

I’m holding it. Initially the particle is moving in a circle of radius r0 with angular

velocity ω0, but I now pull the string down through the hole until a length r remains

between the hole and the particle. (a.) What is the particle’s angular velocity now?

(b.) Assuming that I pull the string so slowly that we can approximate the particle’s

path by circle of slowly shrinking radius, calculate the work I did pulling the string. (c.)

Compare your answer to part (b.) with the particle’s gain in kinetic energy.
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Figure 1. A solution to Problem 1 with a response coded according to the modified

ACER framework.

4.1. What was expected

A solution for the sample problem is presented in Figure 1. This particular problem

was not presented with a diagram. We expected that in order to visualize the physical

system, the students would start with drawing one. In our ACER framework, that

would be represented by codes pick a coordinate system (C1) and visualize the problem

(C2). This problem has three parts and for all of them we expected students to begin

with a general form of an equation, which would be coded as use a general form of an

equation (A2). In part (b.), as they have to do an integration, we expected codes set

the limits of the integration (C5), do the integration (E1) and evaluate the integration

(E10) to occur. Both (b.) and (c.) require substitutions from the answer obtained in

part (a.); therefore, we also expected codes does this answer fit in the next part (R4)

and make substitutions (E3) to be used.

As students perform mathematical operations in their solutions, we expect to see
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Execution codes E3 and E5 (make substitutions and do algebra). When we consider the

problem as a whole, we expect Activation code A2 (use a general form of an equation),

Construction codes C1, C2 and C5 (pick a coordinate system, visualize the problem and

set the limits of the integration), Execution codes E1, E3, E5 and E10 (do the integration,

make substitutions, do algebra and evaluate the integration, respectively) and Reflection

code R4 (does this answer fit in the next part) to be dominating codes.

4.2. What we found

When we used the ACER framework alone, we saw Activation code A2, Construction

codes C1, C3 (use an equation specific to the particular problem) and C5, Execution

codes E1, E3, E5 and E10 and Reflection code R4 as the most commonly used, dominant

codes. Surprisingly, despite the lack of a figure in the problem statement, not all of the

students started with visualizing the problem. They used both the general form of the

equation and the problem related non-general form.

When we applied network analysis (NA) along with centrality measures to the

ACER codes, we found that some of the nodes in the network, identified as important

by the ACER framework (by the number of appearance for particular node), were not

significant when looked at using the NA approach. On the other hand, network analysis

identified nodes as more central which a frequency analysis using ACER alone would

have overlooked.

Figure 1 shows a single student’s solution coded according to the ACER framework.

In Figure 2, the network graph for that student (Fig. 2a), two other students (Fig.

2b,2c), all students’ responses combined into a single graph (Fig. 2d).

Even though this problem was a well-structured problem, different students had

different approaches, as seen in the differences in their starting codes. As students in

figure 2a.) and 2c.) took a diagram approach while student in figure 2b.) used equations

at the start. The graph for all students (figure 2d) is denser than for any one student,

and the specific patterns of each student are lost in the concatenation.

Table 1 presents a summary of the basic network descriptives for all networks

presented in Figure 1. When we look at sizes as measured by the diameter, we see

the average diameter for the students was 5.82 (SD = 1.59). The average density of

students’ solutions was 0.16 (SD = 0.05) with values for individual student’s ranging

from 0.09 to 0.23.

When we look at centrality indices for this problem, the node E3 (making

substitutions) has the highest degree, indicating that it most frequently connects other

steps in the problem solution. This is evidence that the mathematical operation of

substitution is a crucial element in the solving process for this particular problem.

Moreover, almost all the homework problems had multiple parts within the problem

and often subsequent parts required a substitution found in a previous section. When

we look at the network created by combining solutions to this problem from all students,

we found that the top three nodes for all students are the same as the top nodes for
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Figure 2. (a.) network graph representation of the solution presented in Figure 1.,(b.),

(c.) network graphs representing two other students’ solutions to Problem 1 (students

B, C),(d.) all students’ responses to this problem merged into a single network

both sample students (though their order is different).

These network graphs show that students use two different approaches to solve this

problem: they may start with visualizing the problem (such as with a diagram) before

using equations in either a general or specific form; or they may omit the visualization

and move directly to using equations. While this particular problem does not explicitly

ask for graphical representation of the physical situation, drawing appropriate diagrams

is a useful problem solving strategy [10,11], with the possibility that specific instruction

on this topic may increase students’ use of diagrams.

Table 1. Problem 1: Network characteristics for solutions from three students, for a

network created by combining all students’ solutions to this problem.

Student A Student B Student C All students

Diameter 6 5 10 7

Density 0.155 0.167 0.115 0.632

Nodes w/max.

degree

C3 and E3 R4 and E3 R4 E3

E5 and R4 C3 E3 R4

A2 E5 E5 E5
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5. The effects of problem statement type on students’ solution graphs

We found that there is a dependence on the original problem statement reflected on

the network graphs. The first few problem solving steps that students use – the first

few nodes in the network – depend on the kind of prompt that the problem uses. In

particular, we identified three different types of prompts that suggest to students how

they should start the problem:

(i) The problem statement is straightforward and asks students to perform specific

mathematical operations, including trivial math procedures. An example statement

looks like “take the derivative/solve the above position equation for acceleration”.

(ii) The prompt directs students towards the physical system or a diagram as the

problem statement asks for an explanation of the physical system. An example

prompt may include “start with a diagram/free body diagram”.

(iii) The problem statement directs students to think about what equations or

conceptual resources [12] they should bring together to get an equivalent expression

along with the physical system. To do so requires physics knowledge along with

the correct mathematical steps. An example statement looks like “show that/prove

that. . . with the help of physical system”.

In order to determine whether students take the same approach when working on

problems that are structured similarly, we identified three problems that belong to the

same category (the second kind mentioned above) and we studied networks created by

combining solutions to these three problems for each individual student as well as across

all students.

5.1. What was expected

Since we compare problems structured similarly, we expect the crucial components of

students’ solutions to be similar across all students. Allowing for some slight variations,

the core of the solutions should remain unchanged. The problems that we chose for

our analysis include the one discussed in the previous section and thus we expected

Activation code: A2 (use a general form of an equation), Construction codes: C1 (pick

a coordinate system), C2 (visualize the problem), C3 (use an equation specific to the

particular problem) and C5 (set the limits of the integration), Execution codes: E1 (do

the integration), E3 (make substitutions), E5 (do algebra), E10 (evaluate the integration)

and Reflection code: R4 (does this answer fit in the next part) to be the dominating

codes.

5.2. What we found

Table 2 shows characteristics of networks created by combining three structurally

similar problems for three individual students, as well as of a network representing

solutions from all students in the class combined. Nodes A2 (use a general form of an
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Table 2. Network characteristics for solutions from three students and for a network

created by combining all students’ solutions to three problems that were classified as

structurally similar.

Student C Student D Student E All students

Diameter 13 11 10 11

Density 0.133 0.277 0.211 0.309

Nodes w/max.

degree

E5 E3 E3 E5

A2 E5 C5 E3

C3 C5 and A2 E5 C5 and C3

equation), C3 (use an equation specific to the particular problem), C5 (set the limits of

the integration), E3 (make substitutions) and E5 (do algebra) are most central for these

networks.

As we expected based on the structure similarity, students used the general (A2)

or non-general (C3) form of an equation to start the problem. Nodes E3 (make

substitutions) and E5 (do algebra) again are key players in the network; however, since

the problems include integrals, the node C5 (set the limits of the integration) becomes

more prominent. By comparing networks across different problems, we can see whether

students are consistent in their approaches to solving problems with similar structure.

In all cases, node E5 (do algebra) was the most central node. Also, the four most

prominent nodes (A2, C3, E3, E5) are the same for all students and for the merged

network, although their order differs slightly. This alone could suggest that students

take similar approaches to solve all three problems and that these approaches are quite

similar among students.

However, when we look at the network representing students’ solutions in Figure 3

we can see that the network presented in Fig. 3a is significantly different from the

other two networks (Fig. 3b and 3c). Also, the network characteristics in table 2 reveal

that the network for student C has greater diameter and lower density (less connected

graph with more nodes), indicating that this student got sidetracked in his solution.

This could not be seen by the ACER framework alone, as the significant codes for this

student were the same as for students who took a more direct approach.

6. Problem statements and network complexity

Further analysis suggests that problems consisting of more subsections lead to relatively

more complex networks. Here we compare three problems that fall into different

categories. Problem 2 belongs to the first type where students are required to perform

trivial math procedures. Problem 3, on the other hand, falls into the second type and

requires students to start with a diagram.

Problem 2 The shortest path between two points on a curved surface, such as the

surface of a sphere, is called a geodesic. To find a geodesic, one has to first set up an
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Figure 3. Network graphs created by combining solutions to three problems from

three individual students (a. – c.) and from all students’ responses merged into a

single network (d.).

integral that gives the length of a path on the surface in question. This will always be

similar to the integral

L =

∫ 2

1

ds =

∫
x

x2

1

√
1 + y′2(x)ds (1)

but may be more complicated (depending on the nature of the surface) and may involve

different coordinates than x and y. To illustrate this, use spherical polar coordinates (r,

θ, φ) to show that the length of a path joining two points on a sphere of radius R is

L = R

∫ x2

x1

√
1 + y′2(x)ds (2)

Problem 3 Consider the pendulum of Figure 4, suspended inside a railroad car

that is being forced to accelerate with a constant acceleration a. (a.) Write down the

Lagrangian for the system and the equation of motion for the angle φ. Use a trick similar

to the one used in x(t) = A cos(ωt−δ) to write the combination of sin(φ) and cos(φ) as

a multiple of sin(φ + β) (b.) Find the equilibrium angle φ at which the pendulum can

remain fixed (relative to the car) as the car accelerates. Use the equation of motion to

show that this equilibrium is stable. What is the frequency of small oscillation about

this equilibrium position?
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Figure 4. Diagram for Problem 3.

6.1. The comparison

In order to find the relation between the problem statement and the shape of the network

here, we compare networks for three problems by all students. First, we compare the

size of the networks and then we compare the most central nodes of each network.

The size of a network is a measure of the number of nodes within a network. The

network graph discussed in Section 4 (Problem 1) has 16 nodes and 40 edges with eight

strongly connected nodes. The network graph for Problem 2 has 14 nodes and 32 edges

along with five strongly connected nodes and Problem 3 has a network graph with 11

nodes and 31 edges with two strongly connected nodes. The network graph of Problem

1 has a relatively large network size compared to the other two problems. This may

be because Problem 1 has three subsections and the other two problems have fewer

subsections.

Network analysis shows that the most central nodes for the network graph for

Problem 1 (Figure 2c – all student responses) are E3 (make substitutions), R4 (does this

answer fit in the next part), E5 (do algebra) and A2 (use a general form of an equation)

with a network diameter of 5. According to the problem statement, students first have

Figure 5. (a.): Network graph for all responses to Problem 2. (b.): Network graph

for all responses to Problem 3.
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to understand the physical system and then use relevant equations to solve the problem.

The network graph clearly shows that the students start with Construction codes, where

they build a visual representation and then use the Activation codes, where they use

appropriate equations. Because the problem has three subsections, students might recall

an answer from a previous part and substitute it in the next part. Thus, R4 (does this

answer fit in the next part) and E3 (make substitutions) are the most central nodes.

E5 (do algebra), E3 (make substitutions), C5 (set the limits of the integration) and

E2 (take the derivatives) are the most central nodes in the network graph for Problem 2

(Figure 5a – all students’ responses). The network has a diameter of 5. The phrasing of

Problem 2 also requires a visual representation. The students start with Construction

codes and with a diagram. Because the problem does not have subsections, R4 (does

this answer fit in the next part) is not a central node.

In contrast, E3 (make substitutions), E5 (do algebra), E2 (take the derivatives) and

A2 (use a general form of an equation) are the central nodes in Problem 3 (Figure 5b

– all students’ responses), with a network diameter of 4. Some different nodes appear

in this network graph compared to previous two problems. E2 (take the derivatives)

becomes a central node because students were asked to find the equation of motion

and students take derivatives. Within their solutions, students use boundary conditions

to show that this equilibrium is stable; this behavior shows up with two Construction

codes: C10 (state boundary conditions) and C11 (apply boundary conditions).

Comparison between problem statements and the network graphs shows that there

is a dependence of problem statement on the shape of the network. The problems which

consist of more subsections also lead to relatively complex networks.

7. Limitations and Future work

Our research question in this study was to see what, if anything, could be learned

about students’ problem solving given their homework solutions, as they represent a

ubiquitous data source. The information about students’ performance revealed by the

network graphs could be used to enhance the quality and consistency of the homework

or quiz problems.

However, coding homework solutions is a laborious process that is impractical for

ordinary classroom use; instead these recommendations suggest that instructors compare

students’ solutions for elements in common (or unique to each student) as a pedagogical

tool to gauge problem difficulty and divergent thinking. The NA approach is still more

practical than interviewing and videotaping every single student, as it was done in the

original studies [3, 4].

Another limitation of this data source is that we can’t know if students go back and

add more information later, because the only thing we have is the written solution. We

coded students’ solutions by assuming they wrote this strictly linearly; this is reasonable,

as we have observational data of different students writing problems in mostly the order

that they solve them in. In future work, we could more carefully test this assumption.
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Our data are drawn from one highly typical course at a single university. This

approach could be used to compare active-learning classrooms to traditional ones, or

real-world problem sets to ones drawn from a textbook. Though our data cover 23

questions overall, they are limited to classical mechanics. To expand our study more

broadly across the upper division, we are currently collecting data on an Electricity and

Magnetism (EM) course, and augmenting students’ written work with video recordings

of them solving homework problems.

We could use a fine-grained ACER framework to focus on different parts of student

solutions. For instance, we could use the fine-grained activation and construction to

answer a research question like, what is the effect of different problem statements to

students’ approach to solve problems. To do this we may have to carefully design

the problem statements. In our study we did not see large differences in students’

approaches, perhaps because the textbook problems were not designed with that goal.

8. Conclusion

Network analysis has common applications in analyzing social interactions in groups of

people, complex ecosystems and biological systems, and information transfer systems.

In this paper, we use network analytic tools to represent the relationships between

the knowledge elements and steps of problem solving. We use the ACER framework

to identify and code these elements and steps. Together, network analysis and the

ACER framework can model how students connect ideas to solve problems, and allow for

quantitative comparisons among students and problems. Network analysis identifies the

most important mathematical operations in the solving process, as interpreted through

the ACER codes.

Network analysis indicates that in most of the analyzed cases, the most important

nodes are E3 (make substitutions), E5 (do algebra), A2 (use a general form of an

equation), R4 (does this answer fit in the next part). Substitution and algebra in general

are crucial tools for solving these problems. Most of the homework problems had few

parts within the problem and in these cases students may have to go back and check

the previous solution and then substitute it in the next part. While many problems

have similar central nodes, the exact nodes and their order are different across students

and across problems. The shape of the network graphs varies with different problem

statements. Further research is needed to see exactly what properties of problem

statements prompt students to use specific mathematical tools. Nonetheless, network

analysis of students’ problem solutions reveals patterns in their tool use on typical

problems.
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Appendix - Codebook

(i) Activation of the tool

• A1 - Identify the target (quantity/ value)

• A2 - Student uses a general form of an equation

• A3 - Student uses a less-general form of an equation

ANX (N=1, 2, 3) used strategy is unhelpful or incorrect

• A2X Student uses an unhelpful /or other form of an equation

(ii) Construction of the model

• C1 - Pick a coordinate system

• C2 Visualize the problem

• C3 use an equation specific to the particular problem

• C4 understand the meaning of symbols in equation

• C5 set the limits of the integration

• C6 determine at which point the derivatives should evaluate

• C8 label forces on the free body diagram

• C9 make assumptions

• C10 stating boundary conditions
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• C11 applying boundary conditions

CNX (N=1, 2,..7) used strategy is unhelpful or incorrect

(iii) Execution of the mathematics

• E1 do the integration

• E2 take the derivatives

• E3 make the substitutions

• E4 student draw graph(s)

• E5 doing algebra

• E7 Approximations

• E8 evaluate the derivatives

• C9 make assumptions

• E9 [previously C7] take the cross product

• E10 evaluate the integration

ENX (N=1, 2,..4) used strategy is unhelpful or incorrect

(iv) Reflection on the result

• R1 check the units

• R2 check the limits of the final answer

• R3 does this answer make sense?

• R4 does this answer fit in the next part?

• R5 Comparing cases

RNX (N=1, 2 ...4) used strategy is unhelpful or incorrect
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