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Instructions:	

• Start	each	problem	on	a	new	sheet	of	paper.	Write	the	problem	number	on	the	top	
left	of	each	page	and	your	pre-arranged	prelim	ID	number	(but	not	your	name)	on	
the	top	right	of	each	page.	

• Leave	margins	for	stapling	and	photocopying.	

• Write	only	on	one	side	of	the	paper.	Please	do	not	write	on	the	back	side.	

• If	not	advised	otherwise,	derive	the	mathematical	solution	for	a	problem	from	basic	
principles	or	general	laws	(Newton’s	laws,	the	Maxwell	equations,	the	Schrödinger	
equation,	etc.).	

• You	may	use	a	calculator	for	basic	operations	only	(i.e.,	not	for	referring	to	notes	
stored	in	memory,	symbolic	algebra,	symbolic	and	numerical	integration,	etc.)	The	
use	of	cell	phones,	tablets,	and	laptops	is	not	permitted.	

• Show	your	work	and/or	explain	your	reasoning	in	all	problems,	as	the	graders	are	
not	able	to	read	minds.	Even	if	your	final	answer	is	correct,	not	showing	your	work	
and	reasoning	will	result	in	a	substantial	penalty.	

• Write	your	work	and	reasoning	in	a	neat,	clear,	and	logical	manner	so	that	the	
grader	can	follow	it.	Lack	of	clarity	is	likely	to	result	in	a	substantial	penalty.	

	

	 	



Problem	1:	Classical	Mechanics	(CM1)	

A	cannon	shoots	a	ball	at	an	angle	𝜃!	above	the	horizontal	ground	with	an	initial	speed	of	
𝑣!.	Let	𝑟(𝑡)	denote	the	ball’s	distance	from	the	cannon.	What	is	the	largest	possible	value	of	
𝜃!	if	𝑟(𝑡)	is	to	increase	throughout	the	ball’s	flight?	Assume	that	air	resistance	is	negligible.		

Note:	𝑟(𝑡)	is	the	geometric	distance	from	the	launch	point	(the	magnitude	of	the	
displacement	vector),	NOT	the	horizontal	range.		

	

Solution	

Assuming	that	air	resistance	is	negligible,	the	position	of	the	cannon	ball	as	a	function	of	
time	is	given	by	the	standard	𝑥	and	𝑦	introductory	physics	equations	for	projectile	motion:	

𝑥(𝑡) = 𝑣! cos(𝜃!) 𝑡	

	𝑦(𝑡) = 𝑣! sin(𝜃!) 𝑡 −
1
2𝑔𝑡

"	

Where	𝑣!	is	the	initial	velocity,	𝑡 = 0	is	the	instant	of	launch,	and	the	ball	is	launched	from	
the	origin.		

The	distance	from	the	cannon	as	a	function	of	time	is	then	𝑟(𝑡) = 56𝑥(𝑡)7" + 6𝑦(𝑡)7".		

For	the	distance	to	be	increasing	as	a	function	of	time,	the	first	derivative	must	be	greater	
than	zero.	Because	the	square	root	function	is	monotonically	increasing,	maximizing	the	
square	root	is	equivalent	to	maximizing	what	is	under	the	square	root	symbol,		

6𝑥(𝑡)7" + 6𝑦(𝑡)7".	Therefore,	we	can	solve	#$%
!&

#'
= 0	instead,	to	simplify	our	math.		

In	that	case,	we	have	

𝑑(𝑟")
𝑑𝑡 = 2(𝑣! cos 𝜃!)(𝑣! cos 𝜃!)𝑡 + 2:(𝑣! sin 𝜃!)𝑡 −

1
2𝑔𝑡

"; (𝑣! sin 𝜃! − 𝑔𝑡)	

which	simplifies	to		

𝑑(𝑟")
𝑑𝑡 = 𝑔"𝑡( − 3(𝑣!𝑔 sin 𝜃!)𝑡" + 2𝑣!"𝑡.	

Factoring	out	𝑡	and	setting	the	result	to	be	at	least	zero,	we	have	

𝑑(𝑟")
𝑑𝑡 = 𝑡(𝑔"𝑡" − 3(𝑣!𝑔 sin 𝜃!)𝑡 + 2𝑣!") ≥ 0	

This	will	be	true	provided	that	𝑔"𝑡" − 3(𝑣!𝑔 sin 𝜃!)𝑡 + 2𝑣!"	is	at	least	zero.	We	use	the	
quadratic	formula	to	solve	for	the	zeros	and	after	simplifying,	we	find	



𝑡 =
𝑣!
2𝑔 ?3 sin 𝜃! ±

A9 sin" 𝜃! − 8D	

For	small	𝜃!,	𝑟(𝑡)	will	always	increase	because	the	argument	of	the	square	root	is	negative	
(and	hence,	𝑔"𝑡" − 3(𝑣!𝑔 sin 𝜃!)𝑡 + 2𝑣!"	is	always	positive).	The	argument	of	the	square	
root	will	become	positive	(and	hence	𝑔"𝑡" − 3(𝑣!𝑔 sin 𝜃!)𝑡 + 2𝑣!"	will	be	negative)	
provided	that	9 sin" 𝜃! − 8 ≥ 0,	and	the	cutoff	occurs	when	9 sin" 𝜃! − 8 = 0.	Solving	for	𝜃!,	
we	find	that		

sin 𝜃! = E8
9 		⇒ 		 𝜃! = sin)* GE

8
9H	

when	this	happens.	Therefore,	provided	𝜃! < sin :58 9J ;,	𝑟(𝑡)	will	always	be	increasing.		

	 	



Problem	2:	Classical	Mechanics	(CM2)	

Let’s	consider	an	object	with	mass	𝑚	resting	at	a	local	equilibrium	point	(𝑥!)	under	the	
influence	of	potential	𝑉(𝑥).	Due	to	a	small	perturbation,	the	object	started	oscillating	
around	the	equilibrium	point.			

a) Start	with	the	Taylor	expansion	of	𝑉(𝑥)	around	the	equilibrium	point,	show	that	the	
oscillation	frequency	is	𝜔 = A𝑉++(𝑥!) 𝑚⁄ 	

b) If	𝑉(𝑥) = 𝐴 𝑥"⁄ − 𝐵/𝑥,	where	𝐴, 𝐵 > 0,	find	the	small	oscillation	frequency	in	terms	
of	𝑚,𝐴,	and	𝐵.	

(Hint)	For	a	simple	harmonic	motion	under	a	potential,	𝑉(𝑥) = *
"
𝑘(𝑥 − 𝑥!)",	the	frequency	

of	small	oscillations	is	𝜔 = A𝑘 𝑚⁄ 	where	𝑚	is	the	object	mass	and	𝑘	is	spring	constant.		

	

Solution	

a) 𝑉(𝑥) = 𝑉(𝑥!) + 𝑉+(𝑥!)(𝑥 − 𝑥!) +
*
"!
𝑉++(𝑥!)(𝑥 − 𝑥!)" +

*
(!
𝑉+++(𝑥!)(𝑥 − 𝑥!)( +⋯	

𝑉(𝑥!)	is	an	additive	constant	that	can	be	ignored	and,	for	an	equilibrium	point,	
𝑉′(𝑥!) = 0.	Ignoring	higher	order	terms	in	small	oscillations,		

𝑉(𝑥) ≈ *
"
𝑉′′(𝑥!)(𝑥 − 𝑥!)"		

Using	the	provided	hint,	one	can	get	the	oscillation	frequency	of	

𝜔 = A𝑉++(𝑥!) 𝑚⁄ 	

b) We	need	to	find	the	equilibrium	point	first.	

𝑉+(𝑥!) = −2𝐴/𝑥( + 𝐵/𝑥" = 0			à		𝑥 = 𝑥! = 2𝐴 𝐵⁄ 			

𝑉++(𝑥) = 6𝐴 𝑥-⁄ − 2𝐵 𝑥(⁄ 		

plug	in	𝑥! = 2𝐴/𝐵,		

𝑉++(𝑥!) =
6𝐴
𝑥!-

−
2𝐵
𝑥!(

=
6𝐴

?2𝐴𝐵 D
- −

2𝐵

?2𝐴𝐵 D
( =

𝐵-

8𝐴(	

𝜔 = A𝑉++(𝑥!) 𝑚⁄ = E 𝐵-

8𝑚𝐴(	

	 	



Problem	3:	Electricity	and	Magnetism	(EM1)	

A	good	conductor,	with	a	conductivity	𝜎	and	magnetic	permeability	𝜇,	occupies	the	half-
space	𝑥 > 0;	the	region	𝑥 < 0	is	vacuum,	with	a	time-dependent	magnetic	field		
𝐁\\⃗ (𝑡) = 𝐵! cos𝜔𝑡 	𝐞_. .	You	may	ignore	the	displacement	current	for	this	problem.		

a) Draw	a	clearly	labeled	figure	that	illustrates	the	problem.	Write	down	the	equations	
that	describe	the	problem.	To	facilitate	the	solution,	introduce	complex	exponentials	
to	represent	the	trigonometric	functions.		

b) Solve	the	equations	to	obtain	the	behavior	of	the	magnetic	field	for	𝑥 > 0.	Make	sure	
to	take	the	real	part	(i.e.,	express	your	result	in	terms	of	real	functions).	In	your	
solution,	identify	the	skin	depth	𝛿(𝜔),	and	comment	on	its	physical	significance.	

Note:	you	may	find	Ohm’s	Law,	𝐉 = 𝜎𝐄\⃗ ,	useful	for	this	problem.		

	

Solution	

a)	

A	quick	sketch	of	the	problem	is	straightforward.	The	equations	are	Ampère’s	Law	
(ignoring	the	displacement	current)	∇ × 𝐇\\⃗ = 𝐉;	Ohm’s	Law,	𝐉 = 𝜎𝐄\⃗ ,	with	𝜎	the	conductivity;	
and	𝐇\\⃗ = 𝐁\\⃗ /𝜇,	with	𝜇	the	permeability	for	the	conductor.	We	then	have	

∇ × 𝐁\\⃗ = 𝜎𝜇𝐄\⃗ (1)	

Taking	the	curl	of	both	sides,	and	using	∇ × 6∇ × 𝐁\\⃗ 7 = ∇6∇ ⋅ 𝐁\\⃗ 7 − ∇"𝐁\\⃗ = −∇"𝐁\\⃗ ,	along	with	
Faraday’s	Law,	∇ × 𝐄\⃗ = −𝜕𝐁\\⃗ /𝜕𝑡,	we	obtain	the	vector	diffusion	equation	

∇"𝐁\\⃗ =
𝜇𝜎𝜕𝐁\\⃗
𝜕𝑡

. (2)	

Specializing	this	to	the	geometry	above,	with	𝐁\\⃗ (𝑥⃗, 𝑡) = 𝐵(𝑥)𝑒)/0'𝐲_,	we	obtain	

𝑑"𝐵
𝑑𝑥"

= −𝑖𝜔𝜇𝜎𝐵. (3)	

b)	

This	is	a	linear	second-order	equation,	with	solutions	of	the	form	𝑒12;	substituting	into	the	
differential	equation,	we	find	𝜆" = −𝑖𝜇𝜎𝜔.	Taking	the	square	root,	and	recalling	that		
√−𝑖 = (1 − 𝑖)/√2,	we	obtain	

𝜆± = ±
1 − 𝑖
𝛿(𝜔)

, (4)	



where	𝛿(𝜔)	is	the	skin	depth,	

𝛿(𝜔) = E
2

𝜇𝜎𝜔 .
(5)	

The	skin	depth	provides	a	measure	of	the	distance	the	ac	magnetic	field	can	penetrate	into	
the	conductor.	Of	the	two	solutions,	the	one	corresponding	to	𝜆4	diverges	exponentially	for	
large	𝑥,	so	we	set	the	coefficient	of	that	term	equal	to	zero;	after	applying	the	boundary	
condition	at	𝑥 = 0,	we	obtain	

𝐵(𝑥, 𝑡) = Req𝐵!𝑒)(*)/)2/8𝑒)/0'r
	= 𝐵!𝑒)2/8 cos(𝑥/𝛿 − 𝜔𝑡) .

(6)	

	 	



Problem	4:	Electricity	and	Magnetism	(EM2)	

The	rectangular	loop	and	the	wire	shown	in	the	figure	both	lie	in	the	plane	of	the	page.	The	
loop	has	dimensions	of	𝑎 = 1.00	cm	by	𝑏 = 4.00	cm	and	has	a	resistance	of	𝑅 = 0.0200	Ω.	
The	loop	is	moving	directly	away	from	the	wire	(in	the	plane	of	the	page)	at	𝑣 = 10.0	m/s.	
The	wire	carries	a	current	of	15.0	A	to	the	left.	What	is	the	induced	current	(magnitude	and	
direction)	in	the	loop	at	the	instant	that	𝑐 = 2.00	cm?	

Hint:	Find	the	flux	through	the	loop	as	a	function	of	distance	from	the	wire.	

	

	

Solution	

First,	let’s	find	the	flux	through	the	loop	as	a	function	of	its	distance	from	the	wire.	Let	𝑎 =
1.0	𝑐𝑚	and	𝑏 = 4.0	𝑐𝑚	be	the	dimensions	of	the	loop,	and	let	𝑐 = 2.0	𝑐𝑚	be	the	distance	
between	the	wire	and	the	near	edge	of	the	loop.	The	magnetic	field	created	by	the	wire	is	
cylindrically	symmetric,	and	does	not	vary	along	the	𝑥-axis.	Let’s	set	up	an	integral	along	
the	𝑦-axis	to	find	the	flux.	The	field	is	parallel	to	the	normal	vector	of	the	loop	where	is	
crosses	through	the	loop.	An	infinitesimal	element	of	flux	through	the	loop	is	

𝑑Φ9 = 𝐵\⃗ ⋅ 𝑑𝐴 = 𝐵	𝑑𝐴 = 𝐵(𝑏	𝑑𝑦) =
𝜇!𝐼𝑏
2𝜋𝑦 𝑑𝑦	

𝑦	

𝑥	

𝑎 

𝑏	

𝑐	

𝑣	

𝐼	



Now	we	integrate	this	across	the	loop	

Φ9 =
𝜇!𝐼𝑏
2𝜋 }

𝑑𝑦
𝑦

:4;

:
=
𝜇!𝐼𝑏
2𝜋 ln 𝑦�

:

:4;

=
𝜇!𝐼𝑏
2𝜋 ln �

𝑐 + 𝑎
𝑐 �	

If	desired,	we	can	rewrite	this	in	terms	of	y:	

Φ9 =
𝜇!𝐼𝑏
2𝜋 ln �

𝑦 + 𝑎
𝑦 �	

Now,	to	find	the	induced	current,	we	need	to	find	the	induced	emf	as	the	loop	moves	away	
from	the	wire.	For	this,	we	can	use	Faraday’s	law	

|ℰ| = �
𝑑Φ9

𝑑𝑡 �	

Note	that		

𝑑Φ9

𝑑𝑡 =
𝑑Φ9

𝑑𝑦
𝑑𝑦
𝑑𝑡 =

𝑑Φ9

𝑑𝑦 𝑣,where	𝑣 =
𝑑𝑦
𝑑𝑡 	is	the	speed	of	the	loop.	

Thus	the	emf	is		

|ℰ| = �
𝑑Φ9

𝑑𝑦 � 𝑣 = �
𝜇!𝐼𝑏𝑣
2𝜋

𝑑
𝑑𝑦 �ln �

𝑦 + 𝑎
𝑦 ��� = �

𝜇!𝐼𝑏𝑣
2𝜋 �

𝑦
𝑦 + 𝑎�:

𝑦 − (𝑦 + 𝑎)
𝑦" ;�

=
𝜇!𝐼𝑏𝑣
2𝜋 �

𝑎
𝑦(𝑦 + 𝑎)�	

Plugging	in	values,	the	induced	emf	at	the	instant	shown	is	

|ℰ| =
(4𝜋 × 10)<	T ⋅ m/A)(15	A)(4.0	cm)(10	m/s)

2𝜋
1.0	cm

(2.0	cm)(3.0	cm) = 2.0 × 10)=	V	

Finally,	the	induced	current	through	the	loop	is	thus	

𝐼 =
ℰ
𝑅 =

2.0 × 10)=	V
0.020	Ω = 0.0010	A = 1.0	mA	

The	field	points	into	the	page	through	the	loop,	and	is	decreasing	in	magnitude	as	the	loop	
moves	away	from	the	wire,	so	Lenz’s	law	tells	us	that	the	induced	current	will	flow	
clockwise.		

	

	

	


