The University of Georgia

Department of Physics and Astronomy

Prelim Exam

August 11, 2025

PartI (Problems 1, 2, 3, and 4)
9:00 am - 1:00 pm

Instructions:

Start each problem on a new sheet of paper. Write the problem number on the top
left of each page and your pre-arranged prelim ID number (but not your name) on
the top right of each page.

Leave margins for stapling and photocopying.
Write only on one side of the paper. Please do not write on the back side.

If not advised otherwise, derive the mathematical solution for a problem from basic
principles or general laws (Newton’s laws, the Maxwell equations, the Schrédinger
equation, etc.).

You may use a calculator for basic operations only (i.e., not for referring to notes
stored in memory, symbolic algebra, symbolic and numerical integration, etc.) The
use of cell phones, tablets, and laptops is not permitted.

Show your work and/or explain your reasoning in all problems, as the graders are
not able to read minds. Even if your final answer is correct, not showing your work
and reasoning will result in a substantial penalty.

Write your work and reasoning in a neat, clear, and logical manner so that the
grader can follow it. Lack of clarity is likely to result in a substantial penalty.



Problem 1: Classical Mechanics (CM1)

A cannon shoots a ball at an angle 6, above the horizontal ground with an initial speed of
vy. Let r(t) denote the ball’s distance from the cannon. What is the largest possible value of
0, if r(t) is to increase throughout the ball’s flight? Assume that air resistance is negligible.

Note: r(t) is the geometric distance from the launch point (the magnitude of the
displacement vector), NOT the horizontal range.

Solution

Assuming that air resistance is negligible, the position of the cannon ball as a function of
time is given by the standard x and y introductory physics equations for projectile motion:

x(t) = vycos(fy)t

1
y(t) = vosin(fy) t — Egtz

Where v, is the initial velocity, t = 0 is the instant of launch, and the ball is launched from
the origin.

The distance from the cannon as a function of time is then r(t) = \/(x(t))z + (y(t))z.

For the distance to be increasing as a function of time, the first derivative must be greater
than zero. Because the square root function is monotonically increasing, maximizing the
square root is equivalent to maximizing what is under the square root symbol,

d(r?)

(x(t))2 + (y(t))z. Therefore, we can solve 0

= 0 instead, to simplify our math.

In that case, we have

d(r?)
dt

1
= 2(vy cos 6,) (v, cos By)t + 2 ((vo sin 6,)t — Egt2> (vysinf, — gt)
which simplifies to

d(r?)
dt

= g%t3 — 3(vog sin Oy)t? + 2vit.

Factoring out t and setting the result to be at least zero, we have

d(r?)
dt

= t(g%t? — 3(vog sin Byt + 2v2) > 0

This will be true provided that g%t? — 3(v,g sin 8,)t + 2v¢ is at least zero. We use the
quadratic formula to solve for the zeros and after simplifying, we find



Vo

t 29

(3 sin B + /9 sin2 6, — 8)
For small 6, r(t) will always increase because the argument of the square root is negative
(and hence, g?t? — 3(vyg sin 8,)t + 2v§ is always positive). The argument of the square

root will become positive (and hence g2t? — 3(vog sin 8,)t + 2vZ will be negative)
provided that 9 sin? §, — 8 = 0, and the cutoff occurs when 9 sin? 8, — 8 = 0. Solving for 6,

we find that
: 8 __.[ |8
sinf, = ) = 6, =sin 5

when this happens. Therefore, provided 8, < sin ( ’8/9>, r(t) will always be increasing.



Problem 2: Classical Mechanics (CM2)

Let’s consider an object with mass m resting at a local equilibrium point (x;) under the
influence of potential V (x). Due to a small perturbation, the object started oscillating
around the equilibrium point.

a) Start with the Taylor expansion of VV(x) around the equilibrium point, show that the
oscillation frequency is w = /V""(x,)/m

b) IfV(x) = A/x* — B/x, where 4, B > 0, find the small oscillation frequency in terms
of m, 4, and B.

Hint) For a simple harmonic motion under a potential, V(x) = z k(x — x,)?, the frequenc
p p > 0 q y

of small oscillations is w = /k/m where m is the object mass and k is spring constant.

Solution

a) V(x) = V(o) + V' (x0) (x = x0) + 2 V" (x0) (x = %) + 3.V (30) (x — %) + -~

V(x,) is an additive constant that can be ignored and, for an equilibrium point,
V'(xo) = 0. Ignoring higher order terms in small oscillations,

1 n
V() = 2V () (x — %)
Using the provided hint, one can get the oscillation frequency of

© = V" (x)/m

b) We need to find the equilibrium point first.
V'(xg) = —24/x3+B/x>*=0 2> x =x,=2A/B
V"(x) = 6A/x* — 2B/x3

plugin x, = 2A4/B,

V”(x)—6A ZB_ 6A 2B _B4
o) — 4 3 4 3~ 3
RO I

B4
w =V C)/m = Jemas



Problem 3: Electricity and Magnetism (EM1)

A good conductor, with a conductivity ¢ and magnetic permeability u, occupies the half-
space x > 0; the region x < 0 is vacuum, with a time-dependent magnetic field

ﬁ(t) = B, cos wt &,.You may ignore the displacement current for this problem.

a) Draw a clearly labeled figure that illustrates the problem. Write down the equations
that describe the problem. To facilitate the solution, introduce complex exponentials
to represent the trigonometric functions.

b) Solve the equations to obtain the behavior of the magnetic field for x > 0. Make sure
to take the real part (i.e., express your result in terms of real functions). In your
solution, identify the skin depth § (w), and comment on its physical significance.

Note: you may find Ohm’s Law, i = oE, useful for this problem.

Solution

a)
A quick sketch of the problem is straightforward. The equations are Ampere’s Law

(ignoring the displacement current) V X H= f; Ohm’s Law, i = oE, with o the conductivity;

and H = E/,u, with u the permeability for the conductor. We then have

VxB= a,uE (1)
Taking the curl of both sides, and using V x (V x §) =V(V- ﬁ) — V2B = —V2B, along with
Faraday’s Law, V X E= —aﬁ/at, we obtain the vector diffusion equation
- uaaﬁ
VB = 2
3t (2)
Specializing this to the geometry above, with B(%,t) = B(x)e~“t§, we obtain
2B _ -
Jyz = TlwpoB.

b)

This is a linear second-order equation, with solutions of the form e?x. substituting into the
differential equation, we find 22 = —iuow. Taking the square root, and recalling that

V=i = (1 —i)/v/2, we obtain
1-—1i

=+
M= 5wy

(4)



where §(w) is the skin depth,

d(w) = ’i (5)
UOW

The skin depth provides a measure of the distance the ac magnetic field can penetrate into
the conductor. Of the two solutions, the one corresponding to 1, diverges exponentially for
large x, so we set the coefficient of that term equal to zero; after applying the boundary
condition at x = 0, we obtain

B(x,t) = Re[Bye~(1=0x/8g=iwt]
= Bye /% cos(x/8 — wt).

(6)



Problem 4: Electricity and Magnetism (EM2)

The rectangular loop and the wire shown in the figure both lie in the plane of the page. The
loop has dimensions of a = 1.00 cm by b = 4.00 cm and has a resistance of R = 0.0200 Q.
The loop is moving directly away from the wire (in the plane of the page) at v = 10.0 m/s.
The wire carries a current of 15.0 A to the left. What is the induced current (magnitude and
direction) in the loop at the instant that ¢ = 2.00 cm?

Hint: Find the flux through the loop as a function of distance from the wire.

N

AV
7\

Solution

First, let’s find the flux through the loop as a function of its distance from the wire. Let a =
1.0 cm and b = 4.0 cm be the dimensions of the loop, and let ¢ = 2.0 cm be the distance
between the wire and the near edge of the loop. The magnetic field created by the wire is
cylindrically symmetric, and does not vary along the x-axis. Let’s set up an integral along
the y-axis to find the flux. The field is parallel to the normal vector of the loop where is
crosses through the loop. An infinitesimal element of flux through the loop is

tolb

dCDB=§-d/T=BdA=B(bdy):2ny

dy



Now we integrate this across the loop

_ tolb C+ad_y _ tolb
B 2 y 21

C

CJ’“_uolb1 <c+a>
yc 2w " c

If desired, we can rewrite this in terms of y:

p

Uolb  (y+a
= In ( )
2 y
Now, to find the induced current, we need to find the induced emf as the loop moves away
from the wire. For this, we can use Faraday’s law
ddg
dt

€] =

Note that

ddDB_dQDde_dCDB b _dy_ th d of the |
T & i & v, W erev—dt is the speed of the loop.

Thus the emfis

€] = ddg| yolbvi[ln<y+a)]|: ,uolbv< y )(y—(y+a)>‘
dy 2w dy y 2t \y+a y?
_ Molbv a
- 2m <y(y+a))

Plugging in values, the induced emf at the instant shown is

_ (4nx 1077 T-m/A)(15 A)(4.0 cm)(10 m/s) 1.0 cm

=2.0x10">V
2T (2.0 cm)(3.0 cm)

€]

Finally, the induced current through the loop is thus

€ 20x1075V

= 2= "o00z00 0.0010A=1.0mA

The field points into the page through the loop, and is decreasing in magnitude as the loop
moves away from the wire, so Lenz’s law tells us that the induced current will flow
clockwise.



