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Instructions: 

• Start each problem on a new sheet of paper. Write the problem number on the top left of 
each page and your pre-arranged prelim ID number (but not your name) on the top right of 
each page. 

• Leave margins for stapling and photocopying. 

• Write only on one side of the paper. Please do not write on the back side. 

• If not advised otherwise, derive the mathematical solution for a problem from basic 
principles or general laws (Newton’s laws, the Maxwell equations, the Schrödinger 
equation, etc.). 

• You may use a calculator for basic operations only (i.e., not for referring to notes stored in 
memory, symbolic algebra, symbolic and numerical integration, etc.) The use of cell 
phones, tablets, and laptops is not permitted. 

• Show your work and/or explain your reasoning in all problems, as the graders are not able 
to read minds. Even if your final answer is correct, not showing your work and reasoning 
will result in a substantial penalty. 

• Write your work and reasoning in a neat, clear, and logical manner so that the grader can 
follow it. Lack of clarity is likely to result in a substantial penalty. 

 

 

 

  



𝑚𝑚𝑎𝑎 

𝑚𝑚𝑏𝑏 

𝑚𝑚𝑐𝑐 

𝑥𝑥1 

𝑥𝑥2 

𝑔𝑔 

Problem 1: Classical Mechanics (CM1) 

 

Consider the system of three masses 𝑚𝑚𝑎𝑎,𝑚𝑚𝑏𝑏 ,𝑚𝑚𝑐𝑐, shown as black circles in the figure below. The 
grey circles represent massless, frictionless, freely rotating pulleys of negligibly small radii. The 
axle of the upper pulley is held at fixed height. The axle of the lower pulley is connected to mass 
𝑚𝑚𝑎𝑎 by the upper string. Mass 𝑚𝑚𝑏𝑏 is connected to mass 𝑚𝑚𝑐𝑐 by the lower string. Both strings are 
massless and have fixed lengths, ℓ1 and ℓ2, respectively.  

The three masses and the lower pulley are subject to the tension forces of their respective strings. 
The three masses are also subject to their respective weight forces, with gravitational 
acceleration 𝑔𝑔.  

Choose variables 𝑥𝑥1 and 𝑥𝑥2 as depicted in the figure to be generalized coordinates.  

a) Write down the Lagrangian for this system in terms of variables 𝑥𝑥1 and 𝑥𝑥2, their first time 
derivatives 𝑥̇𝑥1 and 𝑥̇𝑥2, and constants 𝑔𝑔,𝑚𝑚𝑎𝑎,𝑚𝑚𝑏𝑏 ,𝑚𝑚𝑐𝑐, ℓ1, and ℓ2, as needed. [Note: do not 
invent alternative variables or constants to replace 𝑥𝑥1 or 𝑥𝑥2.] 
 

b) Write down the Euler-Lagrange equations of motion for 𝑥𝑥1 and 𝑥𝑥2. [You do not need to 
solve these equations.]  

 

 

  The axle of this pulley is fixed in space 



SOLUTION to CM1 

a) Let 𝑥𝑥𝑎𝑎 , 𝑥𝑥𝑏𝑏 , 𝑥𝑥𝑐𝑐 and 𝑥𝑥𝑝𝑝 be the vertical positions of the masses and the mobile pulley, all relative 
to the center of the fixed pulley. We need to write each of these in term of the generalized 
coordinates 𝑥𝑥1 and 𝑥𝑥2. We directly have 𝑥𝑥𝑎𝑎 = 𝑥𝑥1. Assuming the radii of the pulleys are 
negligible compared to ℓ1 and ℓ2, we can get the following relations: 

ℓ1 = 𝑥𝑥𝑎𝑎 + 𝑥𝑥𝑝𝑝, ℓ2 = �𝑥𝑥𝑏𝑏 − 𝑥𝑥𝑝𝑝� + �𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑝𝑝� 

The first equation lets us write  

𝑥𝑥𝑝𝑝 = ℓ1 − 𝑥𝑥𝑎𝑎 = ℓ1 − 𝑥𝑥1 

From the figure, we can see some relations: 

𝑥𝑥𝑏𝑏 = 𝑥𝑥𝑝𝑝 + 𝑥𝑥2 = ℓ1 − 𝑥𝑥1 + 𝑥𝑥2 

𝑥𝑥𝑐𝑐 = 𝑥𝑥𝑝𝑝 + (ℓ2 − 𝑥𝑥2) = ℓ1 − 𝑥𝑥1 + ℓ2 − 𝑥𝑥2 

Now that we have each of the positions expressed in terms of the generalized coordinates, we 
can write the kinetic and potential energy expressions. First, kinetic energy: 

𝑇𝑇 =
1
2
𝑚𝑚𝑎𝑎𝑥̇𝑥𝑎𝑎2 +

1
2
𝑚𝑚𝑏𝑏𝑥̇𝑥𝑏𝑏2 +

1
2
𝑚𝑚𝑐𝑐𝑥̇𝑥𝑐𝑐2

=
1
2
𝑚𝑚𝑎𝑎𝑥̇𝑥12 +

1
2
𝑚𝑚𝑏𝑏(−𝑥̇𝑥1 + 𝑥̇𝑥2)2 +

1
2
𝑚𝑚𝑐𝑐(−𝑥̇𝑥1 − 𝑥̇𝑥2)2

 

Note that ℓ1 and ℓ2 are constant, so they drop out of the time derivatives. Now for the 
potential energy, taking the center of the fixed pulley as the zero and down as the positive 
direction: 

𝑉𝑉 = −𝑚𝑚𝑎𝑎𝑔𝑔𝑥𝑥𝑎𝑎 − 𝑚𝑚𝑏𝑏𝑔𝑔𝑥𝑥𝑏𝑏 − 𝑚𝑚𝑐𝑐𝑔𝑔𝑥𝑥𝑐𝑐
= −𝑚𝑚𝑎𝑎𝑔𝑔𝑥𝑥1 − 𝑚𝑚𝑏𝑏𝑔𝑔(−𝑥𝑥1 + 𝑥𝑥2 + ℓ1) −𝑚𝑚𝑐𝑐𝑔𝑔(−𝑥𝑥1 − 𝑥𝑥2 + ℓ1 + ℓ2)
= −(𝑚𝑚𝑎𝑎 −𝑚𝑚𝑏𝑏 −𝑚𝑚𝑐𝑐)𝑔𝑔𝑥𝑥1 − (𝑚𝑚𝑏𝑏 −𝑚𝑚𝑐𝑐)𝑔𝑔𝑥𝑥2 − (𝑚𝑚𝑏𝑏 + 𝑚𝑚𝑐𝑐)𝑔𝑔ℓ1 − 𝑚𝑚𝑐𝑐𝑔𝑔ℓ2

 

Combining these gives us the Lagrangian: 

𝐿𝐿 = 𝑇𝑇 − 𝑉𝑉 =
1
2
𝑚𝑚𝑎𝑎𝑥̇𝑥12 +

1
2
𝑚𝑚𝑏𝑏(−𝑥̇𝑥1 + 𝑥̇𝑥2)2 +

1
2
𝑚𝑚𝑐𝑐(−𝑥̇𝑥1 − 𝑥̇𝑥2)2

+(𝑚𝑚𝑎𝑎 −𝑚𝑚𝑏𝑏 −𝑚𝑚𝑐𝑐)𝑔𝑔𝑥𝑥1 + (𝑚𝑚𝑏𝑏 −𝑚𝑚𝑐𝑐)𝑔𝑔𝑥𝑥2 + (𝑚𝑚𝑏𝑏 + 𝑚𝑚𝑐𝑐)𝑔𝑔ℓ1 + 𝑚𝑚𝑐𝑐𝑔𝑔ℓ2
 

b) The Euler-Lagrange equation of motion for the 𝑖𝑖th generalized coordinate is 

d
d𝑡𝑡
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥̇𝑥𝑖𝑖

� =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

 

For 𝑥𝑥1, we have: 



d
d𝑡𝑡
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥̇𝑥1

� =
d
d𝑡𝑡

[𝑚𝑚𝑎𝑎𝑥̇𝑥1 + 𝑚𝑚𝑏𝑏(𝑥̇𝑥1 − 𝑥̇𝑥2) + 𝑚𝑚𝑐𝑐(𝑥̇𝑥1 + 𝑥̇𝑥2)]

= 𝑚𝑚𝑎𝑎𝑥̈𝑥1 + 𝑚𝑚𝑏𝑏(𝑥̈𝑥1 − 𝑥̈𝑥2) + 𝑚𝑚𝑐𝑐(𝑥̈𝑥1 + 𝑥̈𝑥2)
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

= (𝑚𝑚𝑎𝑎 −𝑚𝑚𝑏𝑏 −𝑚𝑚𝑐𝑐)𝑔𝑔 

Thus, the equation of motion is 

𝑚𝑚𝑎𝑎𝑥̈𝑥1 + 𝑚𝑚𝑏𝑏(𝑥̈𝑥1 − 𝑥̈𝑥2) + 𝑚𝑚𝑐𝑐(𝑥̈𝑥1 + 𝑥̈𝑥2) = (𝑚𝑚𝑎𝑎 −𝑚𝑚𝑏𝑏 −𝑚𝑚𝑐𝑐)𝑔𝑔 

For 𝑥𝑥2, we have: 

d
d𝑡𝑡
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥̇𝑥2

� =
d
d𝑡𝑡

[𝑚𝑚𝑏𝑏(−𝑥̇𝑥1 + 𝑥̇𝑥2) + 𝑚𝑚𝑐𝑐(𝑥̇𝑥1 + 𝑥̇𝑥2)]

= 𝑚𝑚𝑏𝑏(−𝑥̈𝑥1 + 𝑥̈𝑥2) + 𝑚𝑚𝑐𝑐(𝑥̈𝑥1 + 𝑥̈𝑥2)
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

= (𝑚𝑚𝑏𝑏 −𝑚𝑚𝑐𝑐)𝑔𝑔 

Thus, the equation of motion is 

𝑚𝑚𝑏𝑏(−𝑥̈𝑥1 + 𝑥̈𝑥2) + 𝑚𝑚𝑐𝑐(𝑥̈𝑥1 + 𝑥̈𝑥2) = (𝑚𝑚𝑏𝑏 −𝑚𝑚𝑐𝑐)𝑔𝑔 

 

 

 

 

 

  



Problem 2: Classical Mechanics (CM2) 

A circular ring of radius 𝑅𝑅0 (when at rest) is made from a thin rubber band of mass 𝑚𝑚 and 
stiffness 𝑘𝑘 (elastic force per elongation length). The ring is spun around the axis passing through 
its center, perpendicular to the plane of the ring. Find the new radius 𝑅𝑅 of the ring if the angular 
velocity of its rotation is 𝜔𝜔. Express 𝑅𝑅 in terms of  𝑅𝑅0, 𝑘𝑘, 𝑚𝑚 and 𝜔𝜔. Ignore gravity. 

  



SOLUTION I (Newtonian Mechanics): 

In the inertial lab frame where ring is spinning at angular velocity 𝜔𝜔: 

Consider an infinitesimally small portion of mass 𝑑𝑑𝑑𝑑 at the top of the spinning ring: 

 

 

Centripetal force acting on 𝑑𝑑𝑑𝑑 is 𝐹𝐹𝑐𝑐 = 𝑑𝑑𝑑𝑑𝑣𝑣2

𝑅𝑅
= 𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑘𝑘 2𝜋𝜋(𝑅𝑅 − 𝑅𝑅0)𝑑𝑑𝑑𝑑, with 𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚

2𝜋𝜋
≪ 𝑚𝑚, 

where we used the small angle approximation, sin 𝑥𝑥 ≈ 𝑥𝑥, with 𝑥𝑥 measured in radians. 
Considering that 𝑣𝑣 = 𝜔𝜔𝜔𝜔, after some algebra we find: 

 𝑅𝑅 = 𝑅𝑅0

1−𝑚𝑚𝜔𝜔2

4𝜋𝜋2𝑘𝑘

 

 

SOLUTION II (Non-inertial frame of reference): 

In the non-inertial, rotating reference frame where the ring is at rest: 

Elastic potential energy of the ring, stretched from equilibrium radius 𝑅𝑅0to radius 𝑅𝑅: 

𝑈𝑈E(𝑅𝑅) = + 1
2
𝑘𝑘[2𝜋𝜋(𝑅𝑅 − 𝑅𝑅0)]2  

Centrifugal force  𝐹𝐹C(𝑅𝑅) = 𝑚𝑚𝜔𝜔2𝑅𝑅  contributes a centrifugal potential energy 

𝑑𝑑𝑑𝑑 
𝐹𝐹 𝐹𝐹 

𝑅𝑅 

𝑑𝑑𝑑𝑑/2 𝑑𝑑𝑑𝑑/2 

𝑑𝑑𝑑𝑑 



𝑈𝑈C(𝑅𝑅) = −∫ 𝐹𝐹C(𝑅𝑅′) 𝑑𝑑𝑅𝑅′𝑅𝑅
0 = −1

2
𝑚𝑚𝜔𝜔2𝑅𝑅2 . 

To find the constant (time-indep.) radius 𝑅𝑅, minimize 𝑈𝑈(𝑅𝑅) = 𝑈𝑈C(𝑅𝑅) + 𝑈𝑈E(𝑅𝑅),  by setting 
𝑑𝑑
𝑑𝑑𝑑𝑑
𝑈𝑈(𝑅𝑅) = 0: 

   𝑅𝑅 = 𝑅𝑅0

1−𝑚𝑚𝜔𝜔2

4𝜋𝜋2𝑘𝑘

. 

 

 

SOLUTION III (Lagrangian Mechanics): 

Assuming axial symmetry, the Lagrangian of the spinning ring subjected to elastic force only is 

𝐿𝐿 =
𝑚𝑚(𝑅̇𝑅2 + 𝑅𝑅2𝜑̇𝜑2)

2
−
𝑘𝑘[2𝜋𝜋(𝑅𝑅 − 𝑅𝑅0)]2

2
 

The equations of motion are 

 

d
d𝑡𝑡
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑅̇𝑅

� −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0,   
d
d𝑡𝑡
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜑̇𝜑

� −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 

or, 

𝑚𝑚𝑅̈𝑅 −𝑚𝑚𝑚𝑚𝜑̇𝜑2 + 4𝜋𝜋2𝑘𝑘(𝑅𝑅 − 𝑅𝑅0) = 0, 2𝑅𝑅𝑅̇𝑅𝜑̇𝜑 + 𝑅𝑅2𝜑̈𝜑 = 0 

We are interested in the stationary solution with 𝑅̇𝑅 = 0, 𝑅̈𝑅 = 0, and 𝜑̇𝜑 = 𝜔𝜔, 𝜑̈𝜑 = 0. 

This gives 

−𝑚𝑚𝑚𝑚𝜔𝜔2 + 4𝜋𝜋2𝑘𝑘(𝑅𝑅 − 𝑅𝑅0) = 0 

and, thus, 

𝑅𝑅 =
𝑅𝑅0

1 − 𝑚𝑚𝜔𝜔2

4𝜋𝜋2𝑘𝑘

 

as before. 

 

 



SOLUTION IV (Hamiltonian Mechanics): 

Assuming axial symmetry, the Lagrangian of the spinning ring subjected to elastic force only is 

𝐿𝐿 =
𝑚𝑚(𝑅̇𝑅2 + 𝑅𝑅2𝜑̇𝜑2)

2
−
𝑘𝑘[2𝜋𝜋(𝑅𝑅 − 𝑅𝑅0)]2

2
 

The generalized momenta are 

𝑝𝑝𝑅𝑅 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑅̇𝑅

= 𝑚𝑚𝑅̇𝑅, 𝑝𝑝𝜑𝜑 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜑̇𝜑

= 𝑚𝑚𝑅𝑅2𝜑̇𝜑 

resulting in the Hamiltonian, 

𝐻𝐻 = 𝑝𝑝𝑅𝑅𝑅̇𝑅 + 𝑝𝑝𝜑𝜑𝜑̇𝜑 − 𝐿𝐿 =
𝑝𝑝𝑅𝑅2

2𝑚𝑚
+

𝑝𝑝𝜑𝜑2

2𝑚𝑚𝑅𝑅2
+
𝑘𝑘[2𝜋𝜋(𝑅𝑅 − 𝑅𝑅0)]2

2
 

The Hamilton equations of motion immediately show that 𝑝𝑝𝜑𝜑 (the angular momentum) is 
conserved (since there is no explicit dependence on 𝜑𝜑). Denoting the constant 𝑝𝑝𝜑𝜑 ≡ 𝑙𝑙, we get, 

𝐻𝐻 =
𝑝𝑝𝑅𝑅2

2𝑚𝑚
+

𝑙𝑙2

2𝑚𝑚𝑅𝑅2
+
𝑘𝑘[2𝜋𝜋(𝑅𝑅 − 𝑅𝑅0)]2

2
 

which is a one-dimensional problem with the effective potential energy, 

𝑈𝑈(𝑅𝑅) =
𝑙𝑙2

2𝑚𝑚𝑅𝑅2
+
𝑘𝑘[2𝜋𝜋(𝑅𝑅 − 𝑅𝑅0)]2

2
 

whose graph is given below (with 𝑚𝑚 = 𝑘𝑘 = 𝑅𝑅0 = 1): 

 



The equilibrium value of 𝑅𝑅 is found by minimizing the 𝑈𝑈(𝑅𝑅), subject to the constraint 𝑙𝑙 =
𝑚𝑚𝑅𝑅2𝜔𝜔 = constant, 

𝑑𝑑𝑑𝑑(𝑅𝑅)
𝑑𝑑𝑑𝑑

= −
𝑙𝑙2

𝑚𝑚𝑅𝑅3
+ 4𝜋𝜋2𝑘𝑘(𝑅𝑅 − 𝑅𝑅0) = 0 

or, 

−
(𝑚𝑚𝑅𝑅2𝜔𝜔)2

𝑚𝑚𝑅𝑅3
+ 4𝜋𝜋2𝑘𝑘(𝑅𝑅 − 𝑅𝑅0) = 0 

giving  

−𝑚𝑚𝑚𝑚𝜔𝜔2 + 4𝜋𝜋2𝑘𝑘(𝑅𝑅 − 𝑅𝑅0) = 0 

and, thus, 

𝑅𝑅 =
𝑅𝑅0

1 − 𝑚𝑚𝜔𝜔2

4𝜋𝜋2𝑘𝑘

 

as before. Notice, incidentally, that the “equilibrium” angular momentum as a function of 𝜔𝜔 is 
given by 

𝑙𝑙(𝜔𝜔) = 𝑚𝑚𝑅𝑅2𝜔𝜔 =
𝑚𝑚𝑅𝑅02𝜔𝜔

�1 − 𝑚𝑚𝜔𝜔2

4𝜋𝜋2𝑘𝑘�
2 

whose graph is given below (with 𝑚𝑚 = 𝑘𝑘 = 𝑅𝑅0 = 1) 

 

[FULL CREDIT FOR UP TO HERE.] 



Units check: �𝑚𝑚𝜔𝜔
2

4𝜋𝜋2𝑘𝑘
� = kg/s2

N/m
= 1 (as required). 

The formula is valid for 𝜔𝜔 < 2𝜋𝜋�𝑘𝑘/𝑚𝑚. At 𝜔𝜔 > 2𝜋𝜋�𝑘𝑘/𝑚𝑚 the ring stretches indefinitely. 
Physically, however the constraint is even stronger, 𝜔𝜔 ≪ 2𝜋𝜋�𝑘𝑘/𝑚𝑚, due to the breakdown of the 
“Hooke’s Law” at large elongations, so 

    𝑅𝑅 ≈ 𝑅𝑅0 �1 + 𝑚𝑚𝜔𝜔2

4𝜋𝜋2𝑘𝑘
� . 

In terms of the Route II solution above, the total potential energy, 𝑈𝑈(𝑅𝑅), has a local minimum 
and the solution for 𝑅𝑅 above is a stable equilibrium if 𝜔𝜔 < 2𝜋𝜋�𝑘𝑘/𝑚𝑚.  If 𝜔𝜔 > 2𝜋𝜋�𝑘𝑘/𝑚𝑚  𝑈𝑈(𝑅𝑅) is 
monotonically decreasing and does not have a local extremum for any positive 𝑅𝑅, i.e., the system 
is unstable. 

 

  



Problem 3: Electricity and Magnetism (EM1) 

The figure below shows a U-shaped conducting rail that is oriented vertically in a horizontal, 
uniform magnetic field B. The rail has no electric resistance and does not move. A slide wire with 
mass m, length ℓ, and resistance R can slide up and down without friction and without air 
resistance, while maintaining electrical contact with the rail. The slide wire is released from rest, 
subject to its downward weight force,  𝐹⃗𝐹w , and to the magnetic force. Show that the slide wire 
reaches a constant terminal speed, 𝑣𝑣term. State 𝑣𝑣term, expressed in terms of B, m, ℓ, R and 
gravitational acceleration 𝑔𝑔.  

 
 
 

  



SOLUTION to EM1 

As the wire falls, the flux into the page will increase. This will induce a current to oppose the 
increase, so the induced current will flow counterclockwise. As this current passes through the 
slide wire, it experiences an upward magnetic force. So there is an upward force—a retarding 
force—on the wire as it falls in the field. As the wire speeds up, the retarding force will become 
larger until it balances the weight. 

 
The force on the current-carrying slide wire is 
    𝐹𝐹m = 𝐼𝐼 ℓ 𝐵𝐵. 
 
The induced current is 
   𝐼𝐼 = ℰ

𝑅𝑅
= 1

𝑅𝑅
 �𝑑𝑑Φ
𝑑𝑑𝑑𝑑
�  = 1

𝑅𝑅
 � 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝐴𝐴𝐴𝐴)�  =  𝐵𝐵
𝑅𝑅

 � 𝑑𝑑
𝑑𝑑𝑑𝑑

(ℓ𝑥𝑥)�   =  𝐵𝐵ℓ
𝑅𝑅

 � 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑥𝑥�   =  𝐵𝐵ℓ𝑣𝑣

𝑅𝑅
  . 

Consequently,  
   𝐹𝐹m = 𝐼𝐼 ℓ 𝐵𝐵 = ℓ2𝐵𝐵2

𝑅𝑅
𝑣𝑣 . 

The magnetic force vector, 𝐹⃗𝐹m = 𝐼𝐼  ℓ�⃗  ×  𝐵𝐵�⃗ , points upward, since 𝐵𝐵�⃗  points into the paper and ℓ�⃗  
points in the direction of the current flow in the slide wire, i.e., horizontally from left to right.  
 
The important point is that mF  is proportional to the speed v. As the wire begins to fall and its 
speed increases, so does the retarding magnetic force. Within a very short time, 𝐹𝐹mwill increase in 
size to where it matches the weight 𝐹𝐹w = 𝑚𝑚𝑚𝑚. At that point, there is no net force on the slide wire, 
so it will continue to fall at a constant speed. The condition that the magnetic force equals the 
weight is 
    ℓ2𝐵𝐵2

𝑅𝑅
𝑣𝑣term = 𝑚𝑚𝑚𝑚       ⇒        𝑣𝑣term =   𝑚𝑚𝑚𝑚𝑚𝑚

ℓ2𝐵𝐵2
 

 

  



Problem 4: Electricity and Magnetism (EM2) 

A charged point particle of mass 𝑚𝑚 = 6.0g and unknown charge q is suspended in vacuum from a 
massless string between two parallel planar capacitor plates, carrying charges ±𝑄𝑄,  with 𝑄𝑄 =
+5.0μC, uniformly spread out over the respective opposing plate surfaces of area 𝐴𝐴 = 2.0m2 per 
plate.  

The vector of Earth’s gravitational force acting on the particle points vertically downward, parallel 
to the capacitor plate surfaces. The gravitational acceleration is 𝑔𝑔 = 9.81 m s2⁄ . In equilibrium, 
the string is deflected by an angle 𝜃𝜃 = 25𝑜𝑜 from the vertical towards the right capacitor plate, as 
shown below. 

 

 

 

 

 

 

 

 

 

 

 

(a) Find the strength of the electric field 𝐸𝐸 = �𝐸𝐸�⃗ � produced between the two capacitor plates 
by their charges ±𝑄𝑄. State the direction of the electric field vector, 𝐸𝐸�⃗ . 

 

Hint: The permittivity of free space is 𝜖𝜖𝑜𝑜 = 8.85 × 10−12 C2N−1 m−2.  

 

(b) Find the charge q carried by the point particle. 
    



SOLUTION to EM2 

(a) 𝐸𝐸 = 1
𝜖𝜖𝑜𝑜

 𝑄𝑄
𝐴𝐴

= 1
(8.85×10−12 C2N−1 m−2) �5×10−6C�

(2m2) = 𝟐𝟐𝟐𝟐𝟐𝟐.𝟒𝟒𝟒𝟒 𝐤𝐤𝐤𝐤/𝐂𝐂 
 

Vector 𝐸𝐸�⃗  points horizontally to the left, from positively charged plate to negatively  

charged plate. 

 
(b)  Force components perpendicular to the string: 

Gravitational force 𝐹⃗𝐹𝑔𝑔: 𝐹𝐹𝑔𝑔⊥ = 𝑚𝑚𝑚𝑚  sin(𝜃𝜃) 
Electric force 𝐹⃗𝐹𝑒𝑒:  𝐹𝐹𝑒𝑒⊥ = |𝑞𝑞| 𝐸𝐸  cos(𝜃𝜃) 
 
Force equilibrium perpendicular to string: 
 𝐹𝐹𝑔𝑔⊥ = 𝐹𝐹𝑒𝑒⊥ 

 |𝑞𝑞| = 𝑚𝑚𝑚𝑚
𝐸𝐸

  tan(𝜃𝜃) = (0.006 kg)(9.81ms−2)
(282.49 × 103N/C)   tan(25𝑜𝑜) = 97.16 nC 

 
Sign of  𝑞𝑞: 
 𝐹⃗𝐹𝑒𝑒 = 𝑞𝑞 𝐸𝐸�⃗ :  points horizontally to the right,  since string is deflected to the right 
 𝐸𝐸�⃗ :       points horizontally to the left, opposite to 𝐹⃗𝐹𝑒𝑒 
 𝑞𝑞 must be negative 

 

 𝑞𝑞 = −𝟗𝟗𝟗𝟗.𝟏𝟏𝟏𝟏 𝐧𝐧𝐧𝐧 
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Problem 5: Quantum Mechanics (QM1) 

Compton realized in 1921 that, if X-rays with incident frequency 𝑓𝑓 hit approximately free electrons in a 
solid material, the electrons do not only emit X-rays of the same frequency. He also observed another X-
ray signal, emitted with frequency 𝑓𝑓′ ≤ 𝑓𝑓. The experiments revealed further that the difference of the 
respective wavelengths,   

    ∆𝜆𝜆 = 𝑐𝑐/𝑓𝑓′ − 𝑐𝑐/𝑓𝑓  , 

depends only on the scattering angle, 𝜃𝜃 (defined below), but ∆𝜆𝜆 is independent of the incident X-ray 
frequency, 𝑓𝑓,  and independent of the target material. Here, 𝑐𝑐 denotes the speed of light. 

 

In 1923, Compton himself explained this effect on the basis of Einstein’s hypothesis that X-rays of 
frequency 𝑓𝑓 consist of photons which can be considered as particles with relativistic energy 𝐸𝐸𝛾𝛾 = ℎ𝑓𝑓, 
momentum 𝑝𝑝𝛾𝛾, and zero rest mass. 

 

 

(a) Write down the relativistic conservation equations for the total relativistic energy and momentum 
before and after a photon-electron collision, with electron momentum 𝑝𝑝e = 0 before the collision.  

 

 

(b) Then determine ∆𝜆𝜆 as a function of the angle 𝜃𝜃 between incident and emitted X-rays.  

 

Hint: The relativistic energy of any free particle of momentum  𝑝𝑝 and rest mass 𝑚𝑚 is 

  𝐸𝐸 = �𝑚𝑚2𝑐𝑐4 + 𝑐𝑐2|𝑝𝑝|2 . 

 

 

(c) Calculate ∆𝜆𝜆 specifically for 𝜃𝜃 = 𝜋𝜋/2 (“Compton wavelength of the electron”). 

 

Constants: 

Planck’s constant:  ℎ ≈ 6.62607 × 10−34 Js 



Electron mass:  𝑚𝑚𝑒𝑒 ≈ 9.10938 × 10−31 kg 

Speed of light: 𝑐𝑐 ≈ 2.99792 × 108 m/s 

  



SOLUTION to QM1 

 

 

  



Problem 6: Quantum Mechanics (QM2) 

(a) Write down the Hamiltonian for a quantum particle (moving on the x axis) of mass m and charge q in 
a one-dimensional harmonic oscillator potential and a uniform electric field E in the +𝑥𝑥-direction. The 
harmonic oscillator frequency is 𝜔𝜔. 

 

State your result in terms of    𝑚𝑚 ,   𝜔𝜔 ,   𝑞𝑞 ,   𝐸𝐸  and in terms of the operators 𝑥𝑥� and 𝑝̂𝑝, representing the 
particle’s position and momentum. 

 

 

(b) Evaluate the Heisenberg equations of motion for 𝑥𝑥� and 𝑝̂𝑝.  

 

Hint: In the Heisenberg picture of quantum mechanics, the operators representing observables are time-
dependent and the wave functions are time-independent. Given a time-independent Hamiltonian, 𝐻𝐻�, 
the time-dependent operator of any observable, 𝑄𝑄�(𝑡𝑡), obeys the Heisenberg equation of motion 

 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑄𝑄�(𝑡𝑡) = + 𝑖𝑖

ℏ
 �𝐻𝐻� , 𝑄𝑄�(𝑡𝑡) �  

 

where �𝐴̂𝐴 ,𝐵𝐵�  � ≡ 𝐴̂𝐴𝐵𝐵� − 𝐵𝐵�𝐴̂𝐴  denotes the commutator, for any two operators  𝐴̂𝐴  and 𝐵𝐵�  and ℏ = ℎ/(2𝜋𝜋) 
and ℎ is Planck’s constant. Evaluate the right-hand side of this equation for 𝑥𝑥� and then for 𝑝̂𝑝,  each 
expressed in terms of  𝑚𝑚 ,   𝜔𝜔 ,   𝑞𝑞 ,    𝐸𝐸 ,    𝑥𝑥�   and/or   𝑝̂𝑝.   Assume the commutator of  𝑥𝑥�  and   𝑝̂𝑝  is  time-
independent. 

 

 

 

(c) Show that the Heisenberg equations of motion of 𝑥𝑥� and 𝑝̂𝑝 are operator versions of the classical 
equations of motion for the classical dynamical variables of position and momentum, x and p.   

 

  



SOLUTION to QM2 

 

(a) Kinetic energy operator: 

 𝑇𝑇� = 1
2𝑚𝑚

𝑝̂𝑝 2 . 

 

Potential energy operator: 

 𝑉𝑉� =  𝑚𝑚 𝜔𝜔2

2
𝑥𝑥�2 − 𝑞𝑞𝑞𝑞𝑥𝑥�  . 

 

The Hamiltonian is 𝐻𝐻� = 𝑇𝑇� + 𝑉𝑉� : 

  𝐻𝐻� = 1
2𝑚𝑚

𝑝̂𝑝 2 +  𝑚𝑚 𝜔𝜔2

2
𝑥𝑥�2 − 𝑞𝑞𝑞𝑞𝑥𝑥� . 

 

 

(b) Equations of motion are 

 

[1]  𝑑𝑑
𝑑𝑑𝑑𝑑
𝑥𝑥� = 𝑖𝑖

ℏ
�𝐻𝐻�,𝑥𝑥�� =  1

𝑚𝑚
 𝑝̂𝑝 

 

[2] 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑝̂𝑝 = 𝑖𝑖

ℏ
�𝐻𝐻�, 𝑝̂𝑝� =  −𝑚𝑚𝜔𝜔2𝑥𝑥� + 𝑞𝑞𝑞𝑞 . 

 

 

(c) Classically: 

 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑥𝑥 = 𝑣𝑣 = 1

𝑚𝑚
𝑝𝑝   Compare to [1] 

 

 𝑉𝑉 =  𝑚𝑚 𝜔𝜔2

2
𝑥𝑥2 − 𝑞𝑞𝑞𝑞𝑞𝑞  

 𝐹𝐹 =  −𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  −𝑚𝑚𝜔𝜔2𝑥𝑥 + 𝑞𝑞𝑞𝑞 



 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑝𝑝 = 𝐹𝐹 = −𝑚𝑚𝜔𝜔2𝑥𝑥 + 𝑞𝑞𝑞𝑞   Compare to [2] 
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