The University of Georgia
Department of Physics and Astronomy

Prelim Exam
August 9, 2024

Part | (Problems 1, 2, 3, and 4)
9:00 am - 1:00 pm

Instructions:

Start each problem on a new sheet of paper. Write the problem number on the top left of
each page and your pre-arranged prelim ID number (but not your name) on the top right of
each page.

Leave margins for stapling and photocopying.
Write only on one side of the paper. Please do not write on the back side.

If not advised otherwise, derive the mathematical solution for a problem from basic
principles or general laws (Newton’s laws, the Maxwell equations, the Schrodinger
equation, etc.).

You may use a calculator for basic operations only (i.e., not for referring to notes stored in
memory, symbolic algebra, symbolic and numerical integration, etc.) The use of cell
phones, tablets, and laptops is not permitted.

Show your work and/or explain your reasoning in all problems, as the graders are not able
to read minds. Even if your final answer is correct, not showing your work and reasoning
will result in a substantial penalty.

Write your work and reasoning in a neat, clear, and logical manner so that the grader can
follow it. Lack of clarity is likely to result in a substantial penalty.



Problem 1: Classical Mechanics (CM1)

Consider the system of three masses m,, m;, m., shown as black circles in the figure below. The
grey circles represent massless, frictionless, freely rotating pulleys of negligibly small radii. The
axle of the upper pulley is held at fixed height. The axle of the lower pulley is connected to mass
m, by the upper string. Mass m,, is connected to mass m,. by the lower string. Both strings are
massless and have fixed lengths, £, and #,, respectively.

The three masses and the lower pulley are subject to the tension forces of their respective strings.
The three masses are also subject to their respective weight forces, with gravitational
acceleration g.

Choose variables x; and x, as depicted in the figure to be generalized coordinates.

a) Write down the Lagrangian for this system in terms of variables x; and x,, their first time
derivatives x, and x,, and constants g, m,, my,, m., ¢, and £,, as needed. [Note: do not
invent alternative variables or constants to replace x; or x,.]

b) Write down the Euler-Lagrange equations of motion for x; and x,. [You do not need to
solve these equations.]

- The axle of this pulley is fixed in space




SOLUTION to CM1

a) Letx,, xp,x. and x, be the vertical positions of the masses and the mobile pulley, all relative
to the center of the fixed pulley. We need to write each of these in term of the generalized
coordinates x; and x,. We directly have x, = x;. Assuming the radii of the pulleys are
negligible compared to #; and ¢, we can get the following relations:

t1 = xq + xp, ), = (xb - xp) + (xc - xp)
The first equation lets us write
Xp =101 —xq =41 — X
From the figure, we can see some relations:
Xp =Xp+ X3 =41 — X1 + X3
Xe=xp+ €y —x) =4 —x1 + 4, —x;

Now that we have each of the positions expressed in terms of the generalized coordinates, we
can write the kinetic and potential energy expressions. First, kinetic energy:

1 o2 o2 1 o2
T = Emaxa + Embxb + Emcxc
1

==—m 5c2+1m (—x%; +x )2+1m (=% — %,)?

Note that £, and ¢, are constant, so they drop out of the time derivatives. Now for the
potential energy, taking the center of the fixed pulley as the zero and down as the positive
direction:

V=-mggx, —mpgxp, —megx.
= —Mggxs —Mpg(—x; + x5 + 1) —mcg(—x1; — x, + €1 + £3)
= —(mg —mp —mgx; — (my, —me)gx, — (my + m gty —megt,

Combining these gives us the Lagrangian:

o 1 . ) 1 ) )
L=T-V= Emaxf +§mb(—x1 + x,)? +§mc(—x1 —X,)?

+(mg —my, —m)gx, + (mp —m)gx, + (my, + me) gty + megts
b) The Euler-Lagrange equation of motion for the ith generalized coordinate is
d <6L> _ 0L
de \ox;)  ox;

For x;, we have:



d /oL d
— (—) = —[mgx; + my Xy — %2) + me (% + %3)]

dc\ox,) ~ dr
= mg¥y + mp(¥; — %) + m (¥, + X3)
oL
a_xl = (mg—mp —mg)g

Thus, the equation of motion is
maXy +my (X — %) + m(Xy + %) = (mg —my, —m)g

For x,, we have:

d /0L d
J— (—) = a [mb(—xl + xz) + m(;(xl + xZ)]

dt \dx,
=my (=X + %) + m.(X; + %)
oL
a_xz = (m, —my)g

Thus, the equation of motion is

mp (=X +X%;) + m(X; + X%;) = (mp —my)g



Problem 2: Classical Mechanics (CM?2)

A circular ring of radius R, (when at rest) is made from a thin rubber band of mass m and
stiffness k (elastic force per elongation length). The ring is spun around the axis passing through
its center, perpendicular to the plane of the ring. Find the new radius R of the ring if the angular
velocity of its rotation is w. Express R in terms of R, k, m and w. Ignore gravity.



SOLUTION I (Newtonian Mechanics):

In the inertial lab frame where ring is spinning at angular velocity w:

Consider an infinitesimally small portion of mass dm at the top of the spinning ring:

__ dmv? mdé

Centripetal force actingondm is F, = = FdO =k 2n(R — Ry)dO, with dm = - <m,

where we used the small angle approximation, sin x = x, with x measured in radians.
Considering that v = wR, after some algebra we find:

Ro
mw?
4k

R =

SOLUTION Il (Non-inertial frame of reference):

In the non-inertial, rotating reference frame where the ring is at rest:

Elastic potential energy of the ring, stretched from equilibrium radius Ryto radius R:
Ug(R) = +k[2m(R — Ro)]?

Centrifugal force F.(R) = mw?R contributes a centrifugal potential energy



Uc(R) = — [} Fc(R") dR' = = Smw?R? |

To find the constant (time-indep.) radius R, minimize U(R) = Uc(R) + Ug(R), by setting
% UR) = 0:

> R=

SOLUTION Il (Lagrangian Mechanics):

Assuming axial symmetry, the Lagrangian of the spinning ring subjected to elastic force only is

L= m(R? + R?¢?) k[2m(R — Ry)]?
a 2 Bl 2

The equations of motion are

d(aL) OL_O d(éL) BL_O
dt\or/ 0R ' dt\de/) d¢
or,

mR — mR@? + 4n2k(R —Ry) =0,  2RR¢ + R?¢ =0

We are interested in the stationary solution with R = 0, R = 0, and ¢ = w, $ = 0.

This gives
—mRw? + 4m*k(R—Ry) =0
and, thus,
R
R= °_
1 — Mo~
42k

as before.



SOLUTION IV (Hamiltonian Mechanics):

Assuming axial symmetry, the Lagrangian of the spinning ring subjected to elastic force only is

| MR+ R29%)  k[2m(R — R’

2 2
The generalized momenta are
oL : oL )
Pr=SEp=mR P, =%=mR2<p
resulting in the Hamiltonian,
H = pgR + Pep — L = Z:rzl + 2}797(:;2 + k[27T(R2_ fol

The Hamilton equations of motion immediately show that p,, (the angular momentum) is
conserved (since there is no explicit dependence on ¢). Denoting the constant p, = [, we get,
pe’  1*  k[2r(R—Ry]?

H =
2m + 2mR?2 2

which is a one-dimensional problem with the effective potential energy,

2 | kem(R - Ro)J?

UR) =7 73 2

whose graph is given below (withm = k = R, = 1):

U
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The equilibrium value of R is found by minimizing the U(R), subject to the constraint [ =
mR?w = constant,

dU(R) 12 5
T =~z +4mk(R = Ro) = 0
or,
(mR?w)?
-t 4m2k(R —Ry) = 0
giving
—mRw? + 4n?k(R—Ry) =0
and, thus,
R
R=—"—
1 — Mo
42k

as before. Notice, incidentally, that the “equilibrium” angular momentum as a function of w is
given by

mRyw
l(w) = mR?*w = 0 5
mw?
(1 N 47T2k>
whose graph is given below (withm =k =R, = 1)
L (angular momentum)
50
40F
30t
20}
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e S : : -~ w/(271T)
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[FULL CREDIT FOR UP TO HERE.]




2 2
Units check: [Z:;k] = % = 1 (as required).

The formula is valid for w < 2m,/k/m. At w > 2m./k/m the ring stretches indefinitely.

Physically, however the constraint is even stronger, w < 2m/k/m, due to the breakdown of the
“Hooke’s Law” at large elongations, so

R~Ry(1+022).

412k

In terms of the Route 11 solution above, the total potential energy, U(R), has a local minimum
and the solution for R above is a stable equilibrium if w < 2m/k/m. If 0 > 2m\/k/m U(R) is
monotonically decreasing and does not have a local extremum for any positive R, i.e., the system
IS unstable.



Problem 3: Electricity and Magnetism (EM1)

The figure below shows a U-shaped conducting rail that is oriented vertically in a horizontal,
uniform magnetic field B. The rail has no electric resistance and does not move. A slide wire with
mass m, length £, and resistance R can slide up and down without friction and without air
resistance, while maintaining electrical contact with the rail. The slide wire is released from rest,
subject to its downward weight force, ﬁw , and to the magnetic force. Show that the slide wire
reaches a constant terminal speed, Vierm. Staté vierm, €xpressed in terms of B, m, £, R and
gravitational acceleration g.




SOLUTION to EM1

As the wire falls, the flux into the page will increase. This will induce a current to oppose the
increase, so the induced current will flow counterclockwise. As this current passes through the
slide wire, it experiences an upward magnetic force. So there is an upward force—a retarding
force—on the wire as it falls in the field. As the wire speeds up, the retarding force will become
larger until it balances the weight.

The force on the current-carrying slide wire is
Fn=1¢B.

The induced current is

& dd d d ? | d £
I=c=2 |2 =2 |2UB)| = 1 |5 (0| =2 |22 = 22
R R |dt R ldt R ldt R ldt R

Consequently,

2p2
Fo=1fB=""v.

The magnetic force vector, ﬁm =17¢xB, points upward, since B points into the paper and ¢
points in the direction of the current flow in the slide wire, i.e., horizontally from left to right.

The important point is that F,, is proportional to the speed v. As the wire begins to fall and its

speed increases, so does the retarding magnetic force. Within a very short time, F,will increase in
size to where it matches the weight F,, = mg. At that point, there is no net force on the slide wire,
so it will continue to fall at a constant speed. The condition that the magnetic force equals the
weight is

£2B? _ __ mgR
R Vterm = Mg = Vterm = 252



Problem 4: Electricity and Magnetism (EM?2)

A charged point particle of mass m = 6.0g and unknown charge q is suspended in vacuum from a
massless string between two parallel planar capacitor plates, carrying charges +Q, with Q =
+5.0uC, uniformly spread out over the respective opposing plate surfaces of area A = 2.0m? per
plate.

The vector of Earth’s gravitational force acting on the particle points vertically downward, parallel
to the capacitor plate surfaces. The gravitational acceleration is g = 9.81 m/s?. In equilibrium,
the string is deflected by an angle 8 = 25° from the vertical towards the right capacitor plate, as
shown below.

(@) Find the strength of the electric field E = |E | produced between the two capacitor plates
by their charges +Q. State the direction of the electric field vector, E.

Hint: The permittivity of free space is €, = 8.85 X 10712 C2N"1 m™2.

(b) Find the charge q carried by the point particle.



SOLUTION to EM2

1 (5x1076C)

= 282.49 kN/C

—1e_
(@) E = €0 A (8.85x10~12C2N-1m-2) (2m?2)

Vector E points horizontally to the left, from positively charged plate to negatively

charged plate.

(b) Force components perpendicular to the string:

Gravitational force 17"9: Fy, =mg sin(8)
Electric force F,: F,, =|q| E cos(6)

Force equilibrium perpendicular to string:
FgJ_ =Fey
> lq| = % tan(0) =

(0.006 kg)(9.81ms ™2
(282.49 x 103N/C)

) tan(25°) = 97.16 nC

Sign of g:
ﬁe =q E: points horizontally to the right, since string is deflected to the right
E: points horizontally to the left, opposite to ﬁe

> q must be negative

>  g=-97.16nC
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Prelim Exam

August 9, 2024

Part Il (Problems 5 and 6)

3:00 pm - 5:00 pm

Instructions:

e Start each problem on a new sheet of paper. Write the problem number on the top left of each page
and your pre-arranged prelim ID number (but not your name) on the top right of each page.

e Leave margins for stapling and photocopying.
o Write only on one side of the paper. Please do not write on the back side.

o If not advised otherwise, derive the mathematical solution for a problem from basic principles or
general laws (Newton’s laws, the Maxwell equations, the Schrédinger equation, etc.).

e You may use a calculator for basic operations only (i.e., not for referring to notes stored in memory,
symbolic algebra, symbolic and numerical integration, etc.) The use of cell phones, tablets, and
laptops is not permitted.

e Show your work and/or explain your reasoning in all problems, as the graders are not able to read
minds. Even if your final answer is correct, not showing your work and reasoning will result in a
substantial penalty.

e Write your work and reasoning in a neat, clear, and logical manner so that the grader can follow it.
Lack of clarity is likely to result in a substantial penalty.



Problem 5: Quantum Mechanics (QM1)

Compton realized in 1921 that, if X-rays with incident frequency f hit approximately free electrons in a
solid material, the electrons do not only emit X-rays of the same frequency. He also observed another X-
ray signal, emitted with frequency ' < f. The experiments revealed further that the difference of the
respective wavelengths,

A =c/f' =c/f,

depends only on the scattering angle, 8 (defined below), but A4 is independent of the incident X-ray
frequency, f, and independent of the target material. Here, c denotes the speed of light.

In 1923, Compton himself explained this effect on the basis of Einstein’s hypothesis that X-rays of
frequency f consist of photons which can be considered as particles with relativistic energy E,, = hf,
momentum ﬁy, and zero rest mass.

(a) Write down the relativistic conservation equations for the total relativistic energy and momentum
before and after a photon-electron collision, with electron momentum p, = 0 before the collision.

(b) Then determine AA as a function of the angle 6 between incident and emitted X-rays.

Hint: The relativistic energy of any free particle of momentum p and rest mass m is

E = {m?2c* + c?|p|?.

(c) Calculate AA specifically for 8 = /2 (“Compton wavelength of the electron”).

Constants:

Planck’s constant: h ~ 6.62607 x 10734 Js



Electron mass: m, =~ 9.10938 x 1073 kg

Speed of light: ¢ = 2.99792 x 108 m/s



SOLUTION to QM1

Quantum Mechanics

Problem:

Compton realized in 1921 that if X-rays with frequency v hit quasi-free crystal
electrons, excited electrons do not only emit light of the same frequency. He also
observed another signal with frequency v' < v. The experiments revealed further
that the difference of the respective wavelengths AA = ¢/v' — ¢ /v (c: speed of light)
depends only on the scattering angle, but is independent of the target material.

In 1923, Compton himself explained this effect on the basis of Einstein’s hypothesis
that photons can be considered as particles with energy hv, momentum p,,, and zero
rest mass.

Write down the balance equations (relativistic problem!) for the total energy and
momentum before (p, = 0) and after the collision. Determine AA as a function of the
angle 6 between incident and emitted light. Calculate A2 specifically for 8 = n/2
(“Compton wavelength of electron”).

Constants:

h =~ 6.62607 x 10734 s

m, ~ 9.10938 X 10731 kg
~ 299792 x 108 m/s

Solution:
Photon energy: E,, = hv = |p, |c, photon momentum: p,, = thn with n: unit vector

of direction of photon propagation, electron energy: E, = \/m2c* + p%c?

Energy balance:
before collision: E = E, + E, = hv + m,c?

after collision: E' = E', + E', = hv' + \/m2c* + p2c?
balance: E = E'

Momentum balance:

before: p = p, +p. = %n

after: p’ = p’y +p', = hTVn’ +p’
balance: p = p’

e

Thus, p’, = %(vn —v'n"). Substituting square p;? = }:—j (v +v'% = 2wV cos 0),
where 6 is the angle between n and n/, in energy balance yields 1/v' — 1/v =
h (1 —cos8). Thus, Al = mLC(l — cos 0).

mec

2

For§ = /2, itis Al = —— ~ 2426 X 10™*2m,

eC



Problem 6: Quantum Mechanics (QM2)

(a) Write down the Hamiltonian for a quantum particle (moving on the x axis) of mass m and charge g in
a one-dimensional harmonic oscillator potential and a uniform electric field E in the +x-direction. The
harmonic oscillator frequency is w.

State your result intermsof m, w, q, E andinterms of the operators X and p, representing the
particle’s position and momentum.

(b) Evaluate the Heisenberg equations of motion for X and p.

Hint: In the Heisenberg picture of quantum mechanics, the operators representing observables are time-
dependent and the wave functions are time-independent. Given a time-independent Hamiltonian, H,
the time-dependent operator of any observable, Q (t), obeys the Heisenberg equation of motion

d A i1~ A
- Q@) =+~ |17, 0 |

where [/I ,B ] = AB — BA denotes the commutator, for any two operators A and B and h = h/(2m)
and h is Planck’s constant. Evaluate the right-hand side of this equation for X and then for p, each
expressed intermsof m, w, g, E, X and/or p. Assumethe commutator of X and p is time-
independent.

(c) Show that the Heisenberg equations of motion of X and p are operator versions of the classical
equations of motion for the classical dynamical variables of position and momentum, x and p.



SOLUTION to QM2

(a) Kinetic energy operator:

T=—p2.

2m

Potential energy operator:

The Hamiltonianis H =T + V:

=~ 1 L mw? ~
H=—p2?+ —1x2—qEX.

K 2mp 2

(b) Equations of motion are

d o _irg o] _ 14
[1] &x—h[H,x]— —Db
d . LI A a
(2] =P = E[H,p] = —mw?% + qE
(c) Classically:

Ly=—v= %p - Compare to [1]

dt
m(uz 2
V= X —qEx
F = —Z—Z= —mw?x + qE



%p =F = —mw?x + qE - Compare to [2]
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